DEFINING, CLASSIFYING AND EVALUATING AMBIENT DISPLAY

by

Ben Shelton MIT (Advanced) (Newcastle)

A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy in Computer Science*

December 2019

*This research was supported by an Australian Government Research Training Program (RTP) Scholarship

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

Ben Shelton

Abstract

Since the definition of Calm Computing in 1996 many examples of Ambient Display technology have been documented. This existing knowledge commonly focuses on the design and development of these systems, although there are also smaller volumes of research relating to the classification and evaluation of the technology. Analysis of this research suggests of two gaps in existing knowledge.

Firstly is a gap related to how Ambient Displays can be best described and defined. Using a systematic longitudinal review, this study finds three reoccurring attributes of the technology which can be used to describe Ambient Display. They are: *modality*, *physical form* and *level of interaction*. This study uses these categories to analyse and classify over 450 Ambient Displays reported between 1996 and 2016. This analysis is supported with a meta-analysis of previous taxonomies to provide an in-depth description of the Ambient Display design space. The result of this process is a new set of simplified descriptors, a formal definition of the technology and a standardised set of design dimensions.

A second identified gap in knowledge relates to how the utility of Ambient Displays can be best evaluated. The systematic review finds that Ambient Displays are commonly evaluated with almost 70% of the systems being assessed in some capacity (n=320/459). However, these previous assessments are commonly implementation centric and subjective in nature with few based on more specific design dimensions. This gap in knowledge is addressed by considering measures of Cognitive Load that help assess the workload associated with the technology.

Assessment began using in-situ case study research and an existing Ambient Display called WaveWatch. A self-assessment measure of Cognitive Load, the NASA-TLX, was applied along with direct measures of how often participants noticed the presence of an Ambient Display. Seven participants in a real-world office environment experienced the display for a five-day working week, logging noticed events and recording perceived workload. Around 25% of all on-screen events were noticed while levels of perceived Cognitive Load were found to fluctuate between participants. Aligning perceived levels of Cognitive Load to the presence of an Ambient Display was found to be difficult due to the non-continuous nature of the self-assessment protocol and real-life office environment where the study occurred.

To address some difficulties with the self-assessment protocol of Cognitive Load the Dual Task paradigm was introduced. Objective assessment was achieved using a Detection Response Task (DRT) which is standardised in ISO 17488:2016. The DRT was applied through two laboratory studies where participants were required to complete a primary task, with and without the Ambient Display present.

In the first pilot experiment forty participants completed three primary tasks (Auditory Digital Span task, Visual Digit Span task and n-back task) while undertaking a DRT. The presence of a simulated Ambient Display was a between-subjects factor where half of all participants were exposed to a peripheral visualisation. Two major findings were suggested as a result of this study.

Firstly, it was found that Cognitive Load was able to be manipulated in a reliable manner as a result of increasing task load. Main task performance (Main Effect - F(3, 114)=103.24, p<.001) and Cognitive Load (Main Effect - F(3, 114)=14.91, p<.001) were found to be significantly imposed as an effect of increasing task load in the n-back task. This was not the case for the Digit Span tasks (Visual Span - t(78)=0.51, p=.609, BF_{10} =0.26, Auditory Span - t(78)=0.58, p=.562, BF_{10} =0.27) which were unable to impose Cognitive Load in a consistent manner.

Secondly, the presence of an Ambient Display was not found to result in a performance differential across experimental factors in attributes of main (Main Effect - F(1, 38)=0.71, p=.406, $BF_{Inclusion}$ =0.34) or secondary task performance (Main Effect - F(1, 38)=0.95, p=.336). A secondary experiment was used to validate these results through a study based upon a between-subjects design. In total twenty-seven participants completed a dual task scenario twice. Once with an Ambient Display present and again without any peripheral visualisation in the experimental environment.

The n-back task was found to result in statistically significant increases in DRT Response Time (Main Effect - F(3, 78)=21.84, p<.001) and n-back accuracy (Main Effect - F(3, 78)=93.15, p<.001) as an effect of increasing task load. The presence of an Ambient Display was again found to not result in a performance differential between experimental conditions in the main (Main Effect - F(1, 26)=1.38, p=.251, $BF_{Inclusion}$ =0.30) or secondary task (Main Effect - F(1, 26)=0.01, p=.989, $BF_{Inclusion}$ =0.14).

In summary, this study represents a new contribution to the field of Ambient Display. Previous narrative reviews are built upon by the systematic longitudinal methods of this study which have resulted in a detailed analysis of the first two decades of the technology's development. This approach has allowed the creation of new knowledge regarding the definition of the technology and acts as a detailed resource analysing the theory and practice within the field allowing the identification of gaps within the existing knowledge.

Most prominently the research addresses a gap in the knowledge relating to the objective assessment of Ambient Display. This is achieved through integrating novel methods of continually measuring the workload imposition of the technology in real-time, which is identified as an underutilised approach within the existing knowledge and represents a new way of assessing common design dimensions of the technology.

ACKNOWLEDGEMENTS

The writing of this thesis has been an incredible experience over the past several years in working towards expanding the existing knowledge and finding myself learning new skills which have proved to be invaluable in the research process, my professional and personal life. I would like to extend my sincere gratitude to several individuals who have made this research possible.

First is my principal supervisor Dr Keith Nesbitt. I have worked with Keith for what seems like many years now between my Masters and PhD thesis and continue to find myself learning from Keith's deep knowledge of Computer Science and the research process. Keith's continuous support throughout the writing of this thesis has been remarkable in helping guide the research towards new avenues and opportunities that have not yet been explored in the field.

Next I would like to extend my thanks to my co-supervisor, Associate Professor Ami Eidels. Ami's contribution to this thesis has been incredible through his expertise in the field of Cognitive Psychology which helped guide this work towards considering the applicability of Cognitive Load to the Ambient Display paradigm. Along with Ami, I would also like to thank Alex Thorpe in helping to support this research from a psychology perspective. Alex's advice on research methods and data analysis has been fantastic in enhancing my own skills and pushing this research forward.

Finally on a personal note I would like to thank my colleagues from the university's Marketing and Communications unit for their continuous support throughout the research process. I would also like to thank my partner Jessie and daughter Callie for their patience and support throughout the writing of this thesis.

TABLE OF CONTENTS

CHAPTER 1.0 - INTRODUCTION	
1.1 - Ubiquitous and Calm Technology	2
1.2 - Defining Ambient Display	4
1.3 - Background Technologies	5
1.4 - Diversity of Displays	9
1.5 - Motivations for Developing Ambient Displays	10
1.6 - Research Questions	12
1.7 - Research Design and Methods	15
1.8 - Significance of the Study	17
1.9 - Summary	19
CHAPTER 2.0 - SYSTEMATIC LITERATURE REVIEV	V
2.0.1 - Introduction	23
2.0.2 - Systematic Search Strategy	24
2.0.3 - Search Results	30
CHAPTER 2.1 - DESCRIBING AMBIENT DISPLAY	
2.1.1 - Introduction	35
2.1.2 - Naming Conventions and Definitions	35
2.1.3 - Display Modalities	40
2.1.3.1 - Light	41
2.1.3.2 - Sound, Vibration and Multimodal Displays	47
2.1.3.3 - Object Movement and Manipulation	50
2.1.4 - Display Hardware	52
2.1.4.1 - Screen-based Ambient Displays	53
2.1.4.2 - Object-based Ambient Displays	56
2.1.5 - Interaction Design	58
2.1.6 - Conclusions - Describing Ambient Display	61

CHAPTER 2.2 - CLASSIFYING AMBIENT DISPLAY

2.2.1 - Introduction	65
2.2.2 - Meta-Analysis - Previously Defined Taxonomies	68
2.2.2.1 - Notification	71
2.2.2.2 - Intrusiveness	74
2.2.2.3 - Aesthetics	75
2.2.2.4 - Transition	76
2.2.2.5 - Abstraction	77
2.2.2.6 - Information Capacity	79
2.2.2.7 - Usefulness	80
2.2.2.8 - Location	80
2.2.2.9 - Interactivity	81
2.2.2.10 - Temporal Gradient	82
2.2.2.11 - Modality	83
2.2.2.12 - Output Device	83
2.2.2.13 - Comprehension	85
2.2.3 - Conclusions	86
CHAPTER 2.3 - EVALUATING AMBIENT DISPLAY	
2.3.1 - Introduction	90
2.3.2 - Meta-Analysis	91
2.3.3 - General Research Approaches	92
2.3.4 - Subjective Evaluations	93
2.3.4.1 - Questionnaires	94
2.3.4.2 - Observations	97
2.3.4.3 - Interviews	100
2.3.4.4 - Focus Groups	103
2.3.4.5 - Participant Inquiry	105
2.3.4.6 - Conclusions - Subjective Evaluations	107
2.3.5 - Objective Evaluations	108
2.3.5.1 - Logged Data	110
2.3.5.2 - Participant Performance	111

2.3.5.3 - Conclusions - Objective Evaluations	114
2.3.6 - Research Designs	115
2.3.6.1 - Laboratory Experiments	116
2.3.6.2 - Case Studies	118
2.3.6.3 - User Studies	122
2.3.6.4 - Conclusions - Research Designs	124
2.3.7 - Conclusions	125
CHAPTER 3.0 - AMBIENT DISPLAY AND COGNITIVE LOAI	
3.0.1 - Introduction	
3.0.2 - Cognitive Load Theory	
3.0.3 - Cognitive Load and Ambient Display	131
CHAPTER 3.1 - MEASURING COGNITIVE LOAD	
3.1.1 - Introduction	134
3.1.2 - Measuring Cognitive Load	134
3.1.3 - Cognitive Load - Evaluation Methods	135
3.1.4 - Physiological Measures	136
3.1.4.1 - Eye Tracking	137
3.1.4.2 - Cardiovascular Measures	141
3.1.4.3 - Brain Activity	142
3.1.4.4 - Galvanic Skin Response	144
3.1.4.5 - Respiratory Rate	145
3.1.4.6 - Speech Attributes	146
3.1.4.7 - Conclusions - Physiological Measures	146
3.1.5 - Self-Assessment/Subjective Measures	147
3.1.5.1 - NASA-TLX	148
3.1.5.2 - Subjective Workload Assessment Technique	150
3.1.5.3 - Modified Cooper-Harper Scale	152
3.1.5.4 - Conclusions - Subjective Measures	154
3.1.6 - Dual-Task Assessments	154
3.1.6.1 - Conclusions Dual-Task Assessments	157

3.1.7 - Discussion - Cognitive Load Measures and Ambient Display	158
CHAPTER 4.0 - CASE STUDY: SUBJECTIVE MEASURE OF C	COGNITIVE LOAD
4.1 - Introduction	161
4.2 - Materials - Ambient Display	162
4.2.1 - WaveWatch Ambient Display	162
4.2.2 - Visualisation Mappings	164
4.2.3 - Hardware	166
4.3 - Materials - Data Collection	166
4.3.1 - NASA-TLX and Cognitive Load	167
4.3.2 - Activity Logging	168
4.3.3 - User Perceptions	168
4.4 - Method	169
4.5 - Results	171
4.5.1 - Subjective Cognitive Load	
4.5.2 - Results of Activity Logging	173
4.5.3 - End of Study Interview	
4.5.4 - Self-Completion Questionnaire	177
4.5.5 - Perceived Usability and Ease of Use	179
4.6 - Discussion	181
4.7 - SWOT Analysis	
CHAPTER 5.0 - PRIMARY STUDY: DETECTION RESPONSE	TASK
5.1 - Introduction	189
5.2 - Materials	189
5.2.1 - Ambient Display	189
5.2.2 - Manipulation of Primary Task Load	191
5.2.2.1- n-back Task	191
5.2.2.2- Digit Span Task	192
5.2.3 - Detection Response Task	194
5.3 - Method	196
5.3.1 - Participants	196

5.3.2 - Design	196
5.3.3 - Procedure	197
5.4 - Analysis Approach	200
5.5 - Results	201
5.5.1 - Primary Task Performance	201
5.5.1.1 - n-back Performance	201
5.5.1.2 - Visual Digit Span Performance	202
5.5.1.3 - Auditory Digit Span Performance	203
5.5.2 - DRT Performance	205
5.5.2.1 - Task Load	205
5.5.2.2 - Ambient Display Presence	208
5.5.2.3 - NASA-TLX Ratings	209
5.6 - Discussion	210
5.7 - Conclusion	211
6.1 - Introduction	
6.2 - Materials	
6.2.2 - Manipulation of Primary Task Load	
6.2.3 - Detection Response Task	
6.3 - Methods	
6.3.1 - Participants	
6.3.2 - Design	
6.3.3 - Procedure	
6.4 - Results	
6.4.1 - Primary Task Performance	
6.4.1.1 - n-back Task Performance	
6.4.2 - DRT Performance	
6.4.2.1 - Task Load	
6.4.2.2 - Ambient Display Presence	
6.4.3 - Self-completion Questionnaire	227

6.5 - Discussion	232
CHAPTER 7.0 - CONCLUSIONS	
7.1 - Introduction	238
7.2 - Systematic Review	238
7.3 - Evaluating Ambient Displays	241
7.4 - In-situ Case Study	242
7.5 - Experimental Studies	244
7.6 - Conclusions and Future Work	245
REFERENCES	246
APPENDIX	
Appendix A - Categorised Ambient Displays literature between 1996 and 2016	302
Appendix B - NASA Task Load Index	334
Appendix C - Sources of Workload Comparison Cards	335
Appendix D - Case Study Daily Log Sheet	338
Appendix E - Case Study Questionnaire	339
Appendix F - Perceived Usability and Ease of Use	340
Appendix G - Case Study Questions of the Post-implementation interview	341
Appendix H - WaveWatch Renders	343
Appendix I - n-back Task Instructional Screens	348
Appendix J - n-back Task Collected Data	351
Appendix K - Digit Span Instruction Screens	352
Appendix L - Digit Span Collected Data	353
Appendix M - DRT Collected Data	354
Appendix N - Timeline n-back Portion of the Laboratory Experiment	355
Appendix O - Timeline Digit Span Portion of the Laboratory Experiment	356
Appendix P - Timeline of Prerendered WaveWatch Visualisations	357
Appendix Q - Chart: Ambient Display Literature by Year and Category	358
Appendix R - Chart: Ambient Displays by Modality	359
Appendix S - Chart: Ambient Displays by Physical Form	360

Appendix T - Chart: Ambient Displays by Interaction Type	361
Appendix U - Chart: Ambient Displays by Evaluation	362
Appendix V - Ambient Display Hardware Images	363
TABLE OF FIGURES	
CHAPTER 1.0 - INTRODUCTION	
Figure 1.1 - The first primary gap in the knowledge addressed by this study	13
Figure 1.2 - The second primary gap in the knowledge addressed by this study	14
CHAPTER 2.0 - SYSTEMATIC LITERATURE REVIEW	
Figure 2.0.1 - Ambient Display literature by year and category	31
Figure 2.0.2 - The three areas of research relating to Ambient Display identified by this study	33
CHAPTER 2.1 - DESCRIBING AMBIENT DISPLAY	
Figure 2.1.1 - Distribution of Ambient Displays segmented by display modality	41
Figure 2.1.2 - Distribution plot of modes across all reviewed displays	49
Figure 2.1.3 - Distribution of Ambient Displays segmented by display hardware	53
Figure 2.1.4 - Distribution of Ambient Displays segmented by interaction design	59
CHAPTER 2.2 - CLASSIFYING AMBIENT DISPLAY	
Figure 2.2.1 - Venn Diagram - General Ambient Display descriptors	65
Figure 2.2.2 - Ambient Display design dimensions.	88
CHAPTER 2.3 - EVALUATING AMBIENT DISPLAY	
Figure 2.3.1 - Evaluated Ambient Displays since 1996.	91
Figure 2.3.2 - Frequency distribution of methods used in the evaluation of Ambient Display	92
Figure 2.3.3 - Distribution of studies using subjective measures	94
Figure 2.3.4 - Distribution of methods used in mixed methods protocols	108
Figure 2.3.5 - Distribution of research designs used in the assessment of Ambient Display	115

CHAPTER 3.1 - MEASURING COGNITIVE LOAD

Figure 3.1.1 - Decision tree of the Modified Cooper-Harper scale	153
CHAPTER 4.0 - CASE STUDY: SUBJECTIVE MEASURE OF COGNITIVE	LOAD
Figure 4.1 - Artistic inspiration for the WaveWatch aesthetic	162
Figure 4.2 - WaveWatch - Initial design prototypes	163
Figure 4.3 - WaveWatch - Final design (without birds)	164
Figure 4.4 - WaveWatch - Final design (with added birds)	164
Figure 4.5 - The WaveWatch implemented to the right of a workstation	166
Figure 4.6 - Scatter Plot - Noted bird events and NASA-TLX Weighted Ratings	175
Figure 4.7 - Mean responses to the Self-Completion Questionnaire	178
Figure 4.8 - Mean responses to the Perceived Usability and Ease of Use Questionnaire .	180
Figure 4.9 – SWOT analysis of the case study method	184
CHAPTER 5.0 - PILOT STUDY: DETECTION RESPONSE TASK	
Figure 5.1 - The laboratory where the Dual-Task experiment was conducted	190
Figure 5.2 - A white letter presented in the centre of the screen as part of an n-back task	192
Figure 5.3 - The stimulus response screen for the Auditory digital span task	193
Figure 5.4 - The DRT hardware	194
Figure 5.5 - Attributes of each Stimulus Cycle Period	195
Figure 5.6 - Diagram of the pilot study experimental process	
Figure 5.7 - n-back task accuracy across n-levels	202
Figure 5.8 - Maximum recalled span length on the Visual Digit Span Task	203
Figure 5.9 -Maximum recalled span length on the Auditory Digit Span Task	204
Figure 5.10 - Mean DRT RT across n-back task levels	206
Figure 5.11 - Mean DRT HR across n-back levels	207
Figure 5.12 - Mean DRT RT across n-back levels, split by Ambient Display presence	209
CHAPTER 6.0 - SECONDARY STUDY: DETECTION RESPONSE TASK	
Figure 6.1 - Structure of the secondary experiment	220
Figure 6.2 - Participant accuracy across n-back levels	222
Figure 6.3 - Mean DRT RT across main task n levels	224

	Figure 6.4 - Mean DRT HR across main task n levels	.225
	Figure 6.5 - Mean DRT RT across experimental conditions by n-level	.226
	Figure 6.6 - Mean DRT HR across experimental conditions by n-level	.226
	Figure 6.7 - SWOT analysis of the secondary study's method	.235
T A	ABLE OF TABLES	
CF	HAPTER 1.0 - INTRODUCTION	
	Table 1.1 - Initial motivations of the study	12
	Table 1.2 - Detailed research questions addressed in this study	14
	Table 1.3 - Primary elements of the WaveWatch case study	16
	Table 1.4 - Structure of the thesis	21
CF	HAPTER 2.0 - SYSTEMATIC LITERATURE REVIEW	
	Table 2.0.1 - Attributes of the queries used to search for relevant literature	24
	Table 2.0.2 - IEEE database - Search queries used to find relevant literature	25
	Table 2.0.3 - Scopus query 1 - Search queries used to find relevant literature	25
	Table 2.0.4 - Scopus queries 2 & 3 - Search queries used to find relevant literature	26
	Table 2.0.5 - ACM - Search queries used to find relevant literature	27
	Table 2.0.6 - Web of Science query 1 - Search queries used to find relevant literature	27
	Table 2.0.7 - Web of Science query 2 and 3 - Search queries used to find relevant literature	28
	Table 2.0.8 - The two definitions used in the initial assessment of literature	29
	Table 2.0.9 - Total number of relevant documents from each database	30
CF	HAPTER 2.1 - DESCRIBING AMBIENT DISPLAY	
	Table 2.1.1 - 2000 - 2007 Definitions of Ambient Display from the reviewed literature	37
	Table 2.1.2 - 2008 Definitions of Ambient Display from the reviewed literature	38
	Table 2.1.3 - 2010 - 2011 Definitions of Ambient Display from the reviewed literature	38
	Table 2.1.4 - 2012 - 2016 Definitions of Ambient Display from the reviewed literature	39

CHAPTER 2.2 - CLASSIFYING AMBIENT DISPLAY

	Table 2.2.1 - Various Design Dimensions of Ambient Information Systems - 2002 - 2010	66
	Table 2.2.2 - Various Design Dimensions of Ambient Information Systems - 2011 - 2015	67
	Table 2.2.3 - Ambient Display Taxonomies - 2002 - 2007	69
	Table 2.2.4 - Ambient Display Taxonomies - 2009 - 2011	70
	Table 2.2.5 - Common design dimensions found to reoccur across taxonomies	71
	Table 2.2.6 - Notification levels of the Matthews, Dey, Mankoff, Carter & Rattenbury (2004) taxonomy	72
	Table 2.2.7 - Taxonomies where the concept of <i>Notification</i> was found to occur	74
	Table 2.2.8 - Taxonomies where the concept of <i>Intrusiveness</i> was found to occur	74
	Table 2.2.9 - Taxonomies where the concept of <i>Aesthetics</i> was found to occur	76
	Table 2.2.10 - Taxonomies where the concept of <i>Transition</i> was found to occur	77
	Table 2.2.11 - Taxonomies where the concept of <i>Abstraction</i> was found to occur	78
	Table 2.2.12 - Taxonomies where the concept of <i>Information Capacity</i> was found to occur	79
	Table 2.2.13 - Taxonomies where the concept of <i>Usefulness</i> was found to occur	80
	Table 2.2.14 - Taxonomies where the concept of <i>Location</i> was found to occur	81
	Table 2.2.15 - Taxonomies where the concept of <i>Interactivity</i> was found to occur	82
	Table 2.2.16 - Taxonomies where the concept of <i>Temporal Gradient</i> was found to occur	82
	Table 2.2.17 - Taxonomies where the concept of <i>Modality</i> was found to occur	83
	Table 2.2.18 - Taxonomies where the concept of <i>Output Device</i> was found to occur	84
	Table 2.2.19 - Design dimension mappings for Symbolic Sculptural Displays	84
	Table 2.2.20 - Design dimension mappings for Multiple Information Consolidator	85
	Table 2.2.21 - Design dimension mappings for Information Monitor Display	85
	Table 2.2.22 - Design dimension mappings for High-Throughput Textual Display	85
	Table 2.2.23 - Taxonomies where the concept of Comprehension was found to occur	86
C	CHAPTER 2.3 - EVALUATING AMBIENT DISPLAY	
	Table 2.3.1 - Frequency of reoccurring subjective methods	93
	Table 2.3.2 - Heuristic evaluation questions	96
	Table 2.3.3 - Questions used in evaluation of the Fisherman	120

CHAPTER 3.1 - MEASURING COGNITIVE LOAD

	Table 3.1.1 - Levels of the Task Load dimension	150
	Table 3.1.2 - Levels of the Mental Effort dimension	151
	Table 3.1.3 - Levels of the Physiological Stress dimension	151
C	HAPTER 4.0 - CASE STUDY: SUBJECTIVE MEASURE OF COGNITIVE LOAD	
	Table 4.1 - Mappings of WaveWatch Levels	165
	Table 4.2 - The relationship between online activity and the appearance of the bird visualisation	165
	Table 4.3 - Original NASA-TLX descriptors and those used in the WaveWatch case study	167
	Table 4.4 - Components of the case study	170
	Table 4.5 - An empty Weighted Rating Worksheet	172
	Table 4.6 - Combined NASA-TLX ratings for all participants and case study days	172
	Table 4.7 - Average participant Hit Rates in the logging activity	173
	Table 4.8 - Participant logged events and NASA-TLX ratings	174
	Table 4.9 - Participant Reponses (n=7) to the heuristic self-completion questionnaire	178
	Table 4.10 - Participant Reponses (n=7) to the Usability and Ease of Use questionnaire	180
C	HAPTER 5.0 - PILOT STUDY: DETECTION RESPONSE TASK	
	Table 5.1 - Each of the experiment's primary tasks and accompanying video files	190
	Table 5.2 - Attributes of the pre-rendered clips that were combined to form the visualisations	191
	Table 5.3 - Source of research methods for each primary task	191
	Table 5.4 - Parameters of the Stimulus Presentation Specification	195
	Table 5.5 - Components of the Dual-Task laboratory experiment	198
	Table 5.6 - Bayes Factor cut offs used for interpretation in this study	200
	Table 5.7 - Results of significance testing on n-back task accuracy data	202
	Table 5.8 - Significance testing results of maximum span length on Visual Digit Span task	203
	Table 5.9 - Significance testing results of maximum span length on Auditory Digit Span task	204
	Table 5.10 - Significance testing of mean DRT response time between levels of n-back task	206
	Table 5.11 - Significance testing results of DRT hit rate between levels of n-back task load	207
	Table 5.12 - Significance testing of DRT performance between levels of Digit Span task load	208

CHAPTER 6.0 - SECONDARY STUDY: DETECTION RESPONSE TASK

Table 6.1 - Questions in the subjective measure of the secondary experiment	217
Table 6.2 - Results of significance testing on n-back task accuracy data	222
Table 6.3 - Significance testing of mean DRT Response Time between levels of n-back task load	223
Table 6.4 - Significance testing of mean DRT Hit Rate between levels of n-back task load	224
Table 6.5 - Responses to Q1 - I noticed many waves on WaveWatch	227
Table 6.6 - Significance testing of mean DRT Response Time between agree and disagree response for question one of the self-completion questionnaire	
Table 6.7 - Significance testing of mean DRT Hit Rate between agree and disagree responses for question one the self-completion questionnaire	228
Table 6.8 - Significance testing of mean accuracy in the n-back task between agree and disagree responses for question one the self-completion questionnaire	228
Table 6.9 - Responses to Q2 - Estimate how many waves you noticed on the WaveWatch	228
Table 6.10 - Responses to Q3 - I noticed many large waves on WaveWatch	229
Table 6.11 - Significance testing of mean DRT Response Time between agree and disagree response for question two of the self-completion questionnaire	
Table 6.12 - Significance testing of mean DRT Hit Rate between agree and disagree responses for question two of the self-completion questionnaire	
Table 6.13 - Significance testing of mean accuracy in the n-back task between agree and disagree responses for question two of the self-completion questionnaire	229
Table 6.14 - Responses to Q4 - Estimate how many large waves you noticed on the WaveWatch	230
Table 6.15 - Responses to Q5 - I noticed many birds on the WaveWatch	230
Table 6.16 - Significance testing of mean DRT Response Time between response groups for questive of the self-completion questionnaire	
Table 6.17 - Significance testing of mean DRT Hit Rate between response groups for question five the self-completion questionnaire	
Table 6.18 - Significance testing of mean accuracy in the n-back between response groups for que five of the self-completion questionnaire	
Table 6.19 - Responses to Q6 - Estimate how many birds you noticed on WaveWatch	231
Table 6.20 - Response to Q7 - The WaveWatch display was obtrusive or interrupting	232
Table 6.21 - Response to Q8 - I noticed patterns in the data displayed by the WaveWatch	232